Mathison and the divisors 2

Mathison has become tired of playing with circuits or trains and has decided to solve a maths problem.

You are given a tree with N nodes. Each node contains a key.

Let's define:

- D(n) = set of divisors of integer n
- Count(D(n)) = number of divisors of integer n
- Sum(D(n)) = sum of divisors of integer n
- Prod(u,v)= the product of all keys on the unique path between nodes u and v, including u and v
- $Q1(u,v) = Count(D(Prod(u,v))) \text{ modulo } (10^9 + 9)$
- Q2(u,v) = Sum(D(Prod(u,v))) modulo (10^9+9)

For M given pairs of nodes (u, v) you are to find Q1(u, v) and Q2(u, v).

Standard input

The first line will contain one integer N, the number of nodes in the tree.

The second line will contain N space-separated integers, the keys associated with the nodes.

Each of the next N-1 lines will contain a pair of integers s and t, denoting an edge between s and t. They form a tree.

The next line will contain one integer M, the number of queries you need to answer.

Each of the next M lines will contain a pair of integers u and v, the parameters of the queries you need to compute.

Standard output

The output file will contain M lines, each containing two integers representing, in order, Q1(u,v) and Q2(u,v) for every pair (u,v) of nodes given in the input.

Constraints and notes

- $1 \le N \le 4 \cdot 10^4$
- $1 \le M \le 6 \cdot 10^4$
- All keys will be integers between $1\ \mbox{and}\ 10^6$
- $1 \le u, v \le N$
- $1 \le s, t \le N, s \ne t$

Subtasks

Test cases will be scored individually.

Subtask	Percentage of test cases	Additional input constraints
1	20%	$N \leq 100$

Subtask	Percentage of test cases	Additional input constraints
2	30%	all keys ≤ 100
3	50%	none

For each test you may receive *partial scoring*.

Value of the test awarded	Condition to award the points	
80%	Q1(u,v) must be computed correctly and a wrong value must be supplied for $Q2(u,v)$ for all M pairs of (u,v)	
20%	Q2(u,v) must be computed correctly and a wrong value must be supplied for $Q1(u,v)$ for all M pairs of (u,v)	
100%	Q1(u,v) and $Q2(u,v)$ must be computed correctly for all M pairs of (u,v)	

Examples

Input	Output	Explanation
5 3 4 5 1 5 4 2 1 3 4 5 2 1 4 4	1 1 3 7 12 168 12 168	• $Prod(4,4)=1, D(1)=\{1\}, Count(D(1))=1, Sum(D(1))=1$ • $Prod(2,2)=4, D(4)=\{1,2,4\}, Count(D(4))=3, Sum(D(4))=7$ • $Prod(1,5)=3\cdot 4\cdot 1\cdot 5=60,$ $D(60)=\{1,2,3,4,5,6,10,12,15,20,30,60\}, Count(D(60))=12,$ Sum(D(60))=168 • $Prod(3,4)=5\cdot 3\cdot 4\cdot 1=60,$ $D(60)=\{1,2,3,4,5,6,10,12,15,20,30,60\}, Count(D(60))=12,$
2 2		Sum(D(60))=168
3 4		